陶瓷材料的降温烧结具有什么样的应用前景

zxc2022-06-13 15:05:21陶瓷29

V2O5-Li2CO3复合烧结助剂和单一Li2CO3烧结助剂对降低Al2O3陶瓷烧结温度的效果并不好。CuO-TiO2复合助剂通过TiO2固相烧结和CuO液相烧结机理能有效降低Al2O3陶瓷烧结温度,使其在1200℃实现烧结。 通过引入CuO与TiO2助剂先驱体,纳米粉体的合成温度从1200℃降低到1000℃,使单一α-Al2O3相的合成温度降低了100~200℃。同时缩短了γ-Al2O3向α-Al2O3的转变时间。通过引入MgO-CaO-Al2O3-SiO2玻璃助剂先驱体,可在1000℃获得单一α-Al2O3晶相,与未引入玻璃助剂先驱体相比,其合成温度降低了100~200℃。同时,玻璃助剂先驱体的引入,加快了γ-Al2O3向α-Al2O3的转变进程。 在铝溶胶中引入助剂先驱体得到的纳米氧化铝粉体,能够降低陶瓷的烧结温度。由CuO与TiO2助剂先驱体引入后在1000℃下煅烧制的纳米粉体,可使陶瓷在1150℃达到理论密度的95%以上。在 1100 ℃下煅烧添加了MgO-CaO-Al2O3 -SiO2的铝溶胶获得的粉体,可使陶瓷在1500℃实现烧结。 在上述材料配方探讨基础上,对低温烧结氧化铝陶瓷在摩擦材料、微波介质陶瓷、陶瓷阀芯等领域的应用展开了研究。以上述探讨获得的低温烧结氧化铝为原料,通过混料、压片、排胶、烧结,在1300 ℃温度下烧结制备出氧化铝陶瓷阀芯。由于本项目将氧化铝陶瓷阀芯的烧结温度从1750℃降低到1300℃,有效节省了陶瓷烧结过程中的能耗,具有重要的工业应用前景。据不完全统计,我国Al2O3含量在85%以上的高铝瓷产量已突破70kt/年,这对国家的节能降耗具有重要的意义。

陶瓷制备烧结过程发生化学反应吗

陶瓷在制作过程中,一定发生化学变化的是烧结阶段。
烧结是粉末或粉末压坯加热到低于其中基本成分的熔点的温度,然后以一定的方法和速度冷却到室温的过程。烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得所需的物理、机械性能的制品或材料。

【烧结定义】
在高温下(不高于熔点),陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。
【烧结工艺阶段】

1、低温预烧阶段 
在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
2、中温升温烧结阶段 
此阶段开始出现再结晶,在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时表面的氧化物被还原,颗粒界面形成烧结颈。 
3、高温保温完成烧结阶段 
此阶段中的扩散和流动充分的进行和接近完成,形成大量闭孔,并继续缩小,使孔隙尺寸和孔隙总数有所减少,烧结体密度明显增加。

陶瓷材料合成烧结一步进行与先合成再烧结有什么区别,具体一些,谢谢

合成烧结一步进行的方法叫“反应烧结”(reaction sintering)或者直接反应烧结,楼主可以查查相关的文献,至于密度的区别,可能性很多,需要具体的分析,一般而言,合成烧结一步进行的话,相同的条件是很有可能更致密一些,原因是由于合成烧结一步进行包含表面能和化学势能的降低,而合成后再烧结的话,一般主要的表面能的降低。如果化学势能降低的程度足够的话,那么所放出的热量有利于促进烧结,也就是说有利于致密度的提高,当然还有很多其它的可能性,这个仅供参考啦。