结构胶是什么

zxc2022-06-16 10:59:57陶瓷32

结构胶指强度高(压缩强度>65MPa,钢-钢正拉粘接强度>30MPa,抗剪强度>18MPa),能承受较大荷载,且耐老化、耐疲劳、耐腐蚀,在预期寿命内性能稳定,适用于承受强力的结构件粘接的胶粘剂。
  结构胶强度高、抗剥离、耐冲击、施工工艺简便。用于金属、陶瓷、塑料、橡胶、木材等同种材料或者不同种材料之间的粘接。可部分代替焊接、铆接、螺栓连接等传统连接形式。结合面应力分布均匀,对零件无热影响和变形。

收集了解有关航天飞机的材料

航天飞机是一种有人驾驶可重复使用的航天器,它既能像火箭一样垂直起飞,像太空飞船一样在轨道上运行,又能像飞机一样水平着陆。它是火箭、航天器和航空器的综合产物。
航天飞机可乘坐7名航天员,其中有3名机组人员,4名科学技术专家。航天飞机在轨道上运行时,可完成释放卫星、回收及维修卫星、进行各种微重力科学实验等多种任务。
航天飞机的组成
航天飞机实际上是一个由轨道器、外贮箱和固体助推器组成的往返航天器系统,但人们通常把其中的轨道器称作为航天飞机。
(1)轨道器:轨道器是航天飞机的核心部分,是整个航天飞机系统中唯一可载人、可重复使用的部分。
(2)固体助推器:固体助推器的作用是助推,用于补充主发动机推力的不足。以供再用。
(3)外贮箱:航天飞机的主发动机是液体火箭发动机,推进剂是液体燃料液态氧和液态氢。液体推进剂不装在航天飞机上,而是装在一个独立的可以抛弃的外贮箱里面。采用这种结构形式,可以减少航天飞机轨道器的尺寸和重量,否则航天飞机的轨道器非常庞大。
美国研制过5种型号的航天飞机:哥伦比亚号航天飞机、挑战者号航天飞机、发现号航天飞机、亚特兰蒂斯号航天飞机和奋进号航天飞机。

[1]
前苏联研制过一种型号的航天飞机,1991年对暴风雪号航天飞机成功地进行了无人轨道试飞,其后,由于经费短缺等原因,计划终止。[2]
1969年4月,美国宇航局提出建造一种可重复使用的航天运载工具的计划。1972年1月,美国正式把研制航天飞机空间运输系统列入计划,确定了航天飞机的设计方案,即由可回收重复使用的固体火箭助推器,不回收的两个外挂燃料贮箱和可多次使用的轨道器三个部分组成。经过5年时间,1977年2月研制出一架创业号航天飞机轨道器,由波音747飞机驮着进行了机载试验。1977年6月18日,首次载人用飞机背上天空试飞,参加试飞的是宇航员海斯(C·F·Haise)和富勒顿(G·Fullerton)两人。8月12日,载人在飞机上飞行试验圆满完成。又经过4年,第一架载人航天飞机终于出现在太空舞台,这是航天技术发展史上的又一个里程碑。
虽然世界上也有许多国家都陆续进行过航天飞机的开发,但只有美国与前苏联实际成功发射并回收过这种交通工具。但由于苏联瓦解,相关的设备由哈萨克接收后,受限于没有足够经费维持运作使得整个太空计划停摆,因此全世界仅有美国的航天飞机机队可以实际使用并执行任务。[2]
另外,太空游客也是航天员。乘坐飞船或者航天飞机上天的人都是航天员,也就是说这些人在上天前都已经具备了航天员的要求。在飞天之前,这些普通人都是经过严格的身体检查和长时间的正规的航天员培训,经考核合格的.只是“太空游客”所承担的太空飞行任务不同,他是作为航天载荷任务专家参与飞行的,他与驾驶员、工程师的任务不同,所以对身体的要求相对低一些。航天飞机升空时的重量比火箭大许多,所以加速度较小,一般是3G(火箭是4-4.5G)。
概述

航天飞机的构造
航天飞机是一种垂直起飞、水平降落的载人航天器,它以火箭发动机为动力发射到太空,能在轨道上运行,且可以往返于地球表面和近地轨道之间,可部分重复使用的航天器。它由轨道器、固体燃料助推火箭和外储箱三大部分组成。
外部燃料箱
外表为铁锈颜色,主要由前部液氧箱、后部液氢箱以及连接前后两箱的箱间段组成。外部燃料箱负责为航天飞机的3台主发动机提供燃料。外部燃料箱是航天飞机三大模块中唯一不能重复使用的部分,发射后约8.5分钟,燃料耗尽,外部燃料箱便被坠入到大洋中。
火箭助推器
这对火箭助推器中装有助推燃料,平行安装在外部燃料箱的两侧,为航天飞机垂直起飞和飞出大气层进入轨道,提供额外推力。在发射后的头两分钟内,与航天飞机的主发动机一同工作,到达一定高度后,与航天飞机分离,前锥段里降落伞系统启动,使其降落在大西洋上,可回收重复使用。
轨道器

航天飞机
即航天飞机本身,它是整个系统的核心部分。轨道器是整个系统中惟一可以载人的、真正在地球轨道上飞行的部件,它很像一架大型的三角翼飞机。它的全长37.24m,起落架放下时高17.27m;三角形后掠机翼的最大翼展23.97m;不带有效载荷时质量68t,飞行结束后,携带有效载荷着陆的轨道器质量可达87t 。它所经历的飞行过程及其环境比现代飞机要恶劣得多,它既要有适于在大气层中作高超音速、超音速、亚音速和水平着陆的气动外形,又要有承受载人大气层时高温气动加热的防热系统。因此,它是整个航天飞机系统中,设计最困难,结构最复杂,遇到的问题最多的部分。
轨道器由前、中、尾三段机身组成。前段结构可分为头锥和乘员舱两部分,头锥处于航天飞机的最前端,具有良好的气动外形和防热系统,前段的核心部分是处于正常气 压下的乘员舱。这个乘员舱又可分为三层:最上层是驾驶台,有4个座位,中层是生活舱,下层是仪器设备舱。乘员舱为航天员提供宽敞的空间,航天员在舱内可穿普通地面服装工作和生活。一般情况下舱内可容纳4~7人,紧急情况下也可容纳10人。
航天飞机的中段主要是有效载荷舱。这是一个长18m ,直径4.5m,容积300m3的大型货舱,一次可携带质量达29t 多的有效载荷,舱内可以装载各种卫星、空间实验室、大型天文望远镜和各种深空探测器等。为了在轨道上施放所携带的有效载荷或回收轨道上运行的有效载荷,舱内设有一或二个自动操作的遥控机械手和电视装置。机械手是一根很细的长杆,在地面上它几乎不能承受自身的重量,但是在失重条件下的宇宙空间,却可以迅速而灵活地载卸10t多的有效载荷。航天飞机中段机身除了提供货舱结构之外,也是前、后段机身的承载结构。

航天飞机发射
航天飞机的后段比较复杂,主要装有三台主发动机,尾段还装有两台轨道机动发动机和反作用控制系统。在主发动机熄火后,轨道机动发动机为航天飞机提供进入轨道、进行变轨机动和对接机动飞行以及返回时脱离轨道所需要的推力。反作用控制系统用来保持航天飞机的飞行稳定和姿态变换。除了动力装置系统之外,尾段还有升降副翼、襟翼、垂直尾翼、方向舵和减速板等气动控制部件。